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to be 

&r q"ctRo 1 1 
Uo~ - &T kz 3U2 ( K + 2 ) ( 2 + 3 X )  (20) 

where #z is the dynamic viscosity of  the continuous phase, 
and X is the ratio of  viscosities (droplet to continuous 
phase). The stream function values (made dimensionless by 
U~ R 02) are obtained from equations (12) and (13) of  Levan 

~, = ~43(r2-r4)sin20 + ~ 3n(n--1)(2+ 3X)(K+2) 
.= 3 2 ( 2 n -  I)(1 + X) 
(odd) 

xa._l(r2+n--r~)C~l/2(cosO) (21) 

sin 2 0 3n(n- 1)(2+ 3X)(K+2)  
~2 = ( r 2 - - r - l ) T " F  n=3 ~" 2(2n-- 1)(1 + X )  

(odd) 

xa._l(r 3 "--rl-")Cyl/Z(cosO) (22) 

with 

U = r2 sin 0 00' v = r sin 0 dr" (23) 

3. D ISCUSSION 

The bulk droplet velocity predicted by equation (20) is 
much smaller than that which would be significant in most 
buoyancy driven flows in the earth's gravitational field. How- 
ever, surface tension driven velocities could be significant in 
a micro-gravity environment. The flow lines inside and near 

such a droplet are illustrated in Fig. 2, for the special case 
where the ratio of  viscosities and thermal conductivities are 
unity (i.e. X = 1, K = I). 

Perhaps the most restrictive of  the assumptions made in 
the preceding analysis is assumption (5), the assumption 
that the droplet surface acts as a gray body to the incident 
irradiant energy. Most  droplets will be semi-transparent to 
irradiant energy in the visible range. Thus the preceding 
analysis is strictly valid for only a few systems. However, if 
the droplet absorbs a significant amount of  the incident 
irradiant energy, the droplet will have a non-uniform tem- 
perature profile which can induce droplet motion resulting 
from gradients in the interfacial surface tension. The bulk 
droplet velocity for such a semi-transparent droplet is 
expected to be smaller, yet qualitatively similar to that pre- 
dicted by equation (20). 
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INTRODUCTION 

A LARGE number of  view factors between a variety of surfaces 
has been evaluated using different numerical and analytical 
methods [1]. A close examination of  the literature reveals 
that little work has been done on the view factors between 
axisymmetric bodies and plane surfaces. This note develops 
a general formulation for evaluating the view factors between 
axisymmetric bodies and plane surfaces perpendicular to the 
axis of  symmetry. 

F O R M U L A T I O N  

Consider the configuration shown in Fig. 1, consisting of  
an axisymmetric body and a plane surface perpendicular to 
the axis o f  symmetry. The view factor from differential areas 
to most commonly used axisymmetric bodies are known, e.g. 
the view factors from a differential area to a disk [2], a 

cylinder [3], a cone [4, 5], a sphere [6, 7] and a spherical 
segment [8]. 

A differential ring sector can be generated by rotating the 
differential area about the axis of  symmetry as shown in Fig. 
1. Note that the angle of  rotation is q~. Thus, the view factor 
from the axisymmetric body to t h e  planar surface can be 
determined by integrating the view factor from the axisym- 
metric body to the differential ring over the area of  the planar 
surface 

a 

FAx-A = dFAx a, (1) 
i 

where 

d F . o . .  dA/ddp 
dFA¢ ~, ( J ~  = = acp ¢P aA-Ax Axx (2) 
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FIG. 1. Axisymmetric body and plane surface configuration. 

and 4~ is a function representing the contour  of  plane surface 
A in a polar coordinate system the center of  which is the 
intersection of  the axis of  symmetry and the planar surface. 
Thus,  equation (1) becomes 

=±fo2 
FAx A Ax Ja, (o(a)Fa . . . .  ada. (3) 

For circles the function q~(a) is given by 

(a2+a0 -r   
q~(a) = cos -1 \ 2aao / (4) 

where r is the radius o f  the circle and a0 the radial coordinate 
of  its center. Limits of  integrations al and a2 for this case 
are: al = ao-r and a2 = ao+r. Note that q~(a) given by 
equation (4) corresponds to a half  circle, and the view factor 
to a disk is twice that  obtained based on equations (3) and 
(4). 

For  a straight line connecting points 1 and 2, q~(a) is given 
by 

[y,(xz--xJ)--(yz--y,)xi  cosf l ]  + fl (5) 
~b(a) = sin ' k a(Xz--Xl) 

where 

f l = t a n  ' ( y2-y lx )  
k X 2  - - X l /  

(x l, y i) and (x2, Y2) are coordinates of  points 1 and 2 in the 
Cartesian coordinate system and fl is the angle of  the line 
with the x-axis. When x~ = x2, ~b(a) for the straight line 
becomes 

~b(a)=cos-'(x2). (6) 

A P P L I C A T I O N S  

Considering the view factors from a disk to another  disk, 
~b(a) is given by equation (4). Figure 2 shows the resulting 
view factors vs h/rj and ao/rl as a parameter  when r2/rl = 1. 
Note that  when a0 = 0 the resulting view factors are identical 
to those of  the exact solution given in ref. [1]. 

Another  case is the view factor from a disk to a disk 
segment. The contour  of  a disk segment consists of  a circle 
part and a straight line part. For  the circle part equation (4) 
and for the straight line part  equation (5) are used for q~(a) 
in equation (3). Figure 3 shows the resulting view factors 
from disks to disk segments. 

For  a limiting case when the two disks are coaxial the 
results produced by the present method are identical to those 

O ,  1 2 ~ "~ . 

o . o  
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h / r  1 

FIG. 2. View factor between two parallel non-coaxial disks. 

given in refi [9]. However, it is worth mentioning that the 
formulation given by equation (3) reqmres one numerical 
integration, while the formulation described in ref. [9] 
involves two numerical integrations. Furthermore,  the pre- 
sent formulation is more versatile than the formulation given 
in ref. [8] and can be used to evaluate view factors for non- 
coaxial cases and more diversified configurations. 

Next, consideration is given to the view factor from a disk 
to a polygon. The sides of  the polygon consist of  straight 
lines ; hence, equations (5) and (6) can be used to determine 
~b(a). In this case, equation (3) has to be evaluated for each 
side of  the polygon and the resulting equation is in the form 
of  a finite series which is given by 

1 m ( '%+ I 

FAx-po, . . . .  = Ax.~=, .Ja.I ~(a)F d . . . .  ada (7) 

where a. = x/(xZ.+y2.) and, x.  and y. are coordinates of  
vertex n of  the polygon in the Cartesian coordinate system, 
a~ = a,.+l and m is the total number  of  vertices. Note that  
the order of  numbering of  the vertices should be clockwise 
when they are in the first or third quadrant  and counter- 
clockwise when they are in the second or fourth quadrant  in 
order to obtain positive view factors. 

If the function representing the contour  of  the plane sur- 
face is not  known in an algebraic form, the contour  can be 

~ / r l = O  ] r 2 / r l = l  
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FIG. 3. View factor between a disk and a disk segment. 
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FIG. 4. View factor between a sphere and a non-coaxial, 
intersecting disk. 

represented by a number  of  discrete points and the surface 
can be approximated by a polygon with the discrete points 
as its vertices. Equat ion (7) can then be used to determine 
the view factor from the disk to the surface. The accuracy of  
this approach was tested using the view factors between two 
disks by approximating one of  the disks as a polygon with 
eight vertices and comparing the results to the exact solution 
given in ref. [1]. The results agree to four or more decimal 
points. 

Another  configuration which was studied is the sphere and 
plane surface configuration. The view factor from spheres to 
non-coaxial and non-intersecting disks have been evaluated 
by Feingold and Gupta  [10]. The results of  the present for- 
mulation for the view factor between spheres and non-inter- 
secting disks are found to be in agreement with those of ref. 
[10]. The resulting view factors from spheres to non-coaxial 
and intersecting disks are shown in Fig. 4. These results are 
from the whole sphere to the upper part  of  the disk. 

Next, the view factor from cones and cylinders to planar 
surfaces is considered. Making use of the view factor from a 
differential area to a cylinder given in ref. [3] and equation 
(3), the view factors from cylinders to planar surfaces can be 
calculated. Figure 5 shows the view factor from a cylinder to 
a non-coaxial disk. Similarly, the view factor from cones to 
plane surfaces can be calculated by making use of the view 
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FIG, 5. View factor between a cylinder and a disk. 
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FIG. 6. View factor between a cone and a disk 

factor from a differential area to a cone given in refs. [4, 5], 
and equation (3). Figure 6 shows the view factors from cones 
to non-coaxial disks. 

In summary,  the method discussed in this note can be used 
to evaluate radiative configuration factors from axisym- 
metric bodies and plane surfaces. The present approach 
(equation (3)) requires the view factor from differential areas 
to the axisymmetric body which is known for most  common 
axisymmetric bodies, and a function representing the contour  
of  the plane surface in a polar coordinate system. If this 
function is not  known in algebraic form, then it can be 
approximated by a set of  discrete points, and equation (7) 
used to evaluate the view factor. 
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